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Abstract— Legged robots have unparalleled mobility on un-
structured terrains. However, it remains an open challenge
to design locomotion controllers that can operate in a large
variety of environments. In this paper, we address this chal-
lenge of automatically learning locomotion controllers that can
generalize to a diverse collection of terrains often encountered
in the real world. We frame this challenge as a multi-task
reinforcement learning problem and define each task as a
type of terrain that the robot needs to traverse. We propose
an end-to-end learning approach that makes direct use of
the raw exteroceptive inputs gathered from a simulated 3D
LiDAR sensor, thus circumventing the need for ground-truth
heightmaps or preprocessing of perception information. As
a result, the learned controller demonstrates excellent zero-
shot generalization capabilities and can navigate 13 different
environments, including stairs, rugged land, cluttered offices,
and indoor spaces with humans.

I. INTRODUCTION

The ability to traverse unstructured terrains make legged
robots an appealing solution to a wide variety of tasks,
including disaster relief, last-mile delivery, industrial inspec-
tion, and planetary exploration [1], [2]. To deploy robots
in these settings successfully, we must design controllers
that work well across many different terrains. Due to the
diversity of environments that a legged robot can operate
in, hand-engineering such a controller presents unique chal-
lenges. Deep Reinforcement Learning (DRL) has proven
itself capable of automatically acquiring control policies to
accomplish a large variety of challenging locomotion tasks.
However, many of these approaches learn control policies
that succeed in a single type of terrain with limited variations.
This approach limits the robot’s ability to generalize to new
or unseen environments, which is a crucial feature of a useful
locomotion controller.

In this paper, we develop an end-to-end reinforcement
learning system that enables legged robots to traverse a
large variety of terrains. To facilitate learning generalizable
policies, we make two purposeful design decisions for our
learning system. First, we formulate the problem as a Multi-
Task Partially Observable Markov Decision Problem and
show that the robot learns a robust policy that works well
across a wide variety of tasks (terrains). To this end, we
develop a novel procedural terrain generation method, which
can efficiently generate a large variety of terrains for training.
Second, we design an end-to-end neural network architecture
that can handle both perception and locomotion. We call
this parameterization a visual-locomotion policy. While many
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Fig. 1. A Laikago robot navigating a variety of complex terrains not
encountered during training.

prior works in the legged robot literature focused on blind
walking, which does not involve exteroceptive sensors (e.g.,
camera, LiDAR), we find that exteroceptive perception is
essential for robots to navigate in diverse environments. Our
end-to-end visual-locomotion policy takes both exterocep-
tive (a LiDAR scan) and proprioceptive information of the
robot and outputs low-level motor commands. We embed
the Policies Modulating Trajectory Generator (PMTG) [3]
framework into our policy architecture to generate cyclic and
smooth actuation patterns, and to facilitate the learning of
robust locomotion policies.

We evaluate our learning system using a high-fidelity
physics simulator [4] and visually-realistic indoor scans [5]
(Figure 1). We test the learned policy in thirteen different
and realistic simulation environments (five training and eight
testing). Our system learns highly generalizable locomotion
policies, which demonstrate zero-shot generalization to un-
seen testing environments. We also show that our visual-
locomotion policy’s parameterization is key to generaliza-
tion and yields far better performance than commonly-used
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reactive policies. This paper’s main contributions include an
end-to-end visual-locomotion policy parameterization and a
complete multi-task learning system, with which a quadruped
robot learns a single locomotion policy that can traverse a
diverse set of terrains.

II. RELATED WORK

A. Legged Locomotion

Locomotion controllers can be developed using trajectory
optimization [6], whole-body control [7], model predictive
control [8], and state-machines [9]. While the controllers
developed by these techniques can generalize to a certain
degree, expertise and manual tuning are often needed to adapt
them to different terrains.

In contrast, Deep Reinforcement Learning [10] can au-
tomatically learn agile and robust locomotion skills [11],
[12], [13], [14]. Prior work in RL has learned policies that
are specific for a single environment [15], or generalize to
variations of a single type of terrain [16], [17], [18]. Recently,
Lee et. al. [14] combined various techniques, such as Actu-
atorNet [13], PMTG [3], curriculum learning and “learning
by cheating” [19], which successfully performed zero-shot
transfer from simulation to many challenging terrains in
the real world. While our paper’s high-level goal is similar
to this prior work, our approach incorporates exteroceptive
sensors that enable the robot to navigate in cluttered indoor
environments where blind walking may have difficulties.

B. Multi-Task Reinforcement Learning

Multi-task reinforcement learning (MTRL) [20] is a
promising approach to train generalizable policies that can
accomplish a wide variety of tasks. Hessel et. al. [21] learned
a single policy that achieves state-of-the-art performance on
57 Atari games. Yu et al. [22] evaluated the performance
of various RL algorithms on a grasping and manipulation
benchmark and demonstrated that a single control policy is
capable of completing a variety of complex robotic manip-
ulation tasks. In this paper, we apply MTRL to develop a
learning system for locomotion that enables legged robots to
navigate in a large variety of environments.

III. METHODS

In this work, we frame legged locomotion as a multi-
task reinforcement learning problem (MTRL) and define
each task as a type of terrain that the legged robot (agent)
must traverse. To learn generalizable locomotion policies, our
learning system consists of a procedural terrain generator
that can efficiently generate diverse training environments,
and an end-to-end visual-locomotion policy architecture that
directly maps the robot’s exteroceptive and proprioceptive
observations to motor commands.

A. Multi-Task Reinforcement Learning Formulation

Given a distribution of tasks M, each task Mi ∈ M is
a Partially Observable Markov Decision Process (POMDP).
A POMDP is tuple, Mi = 〈S,O,A, Ti,R〉, where S is the
state space, O is the observation space, A is the action space,

Ti : S ×A× S → R+ is the transition probability function,
and R : S ×A → R is the reward function. During training,
the agent is presented with randomly sampled tasks Mi ∈M
(Section III-B). The solution of the multi-task POMDP is
a stochastic policy π : O × A → R+ that maximizes the
expected accumulated reward over the episode length T .

π∗ = arg max
π

E
Mi∈M

[
T∑
t=0

r(st,at)

]
Our problem is partially observable because of the limited

sensors onboard the robot1. The robot is equipped with a
LiDAR sensor to perceive the distances d to the surrounding
environment. Proprioceptive information comes from a simu-
lated IMU sensor, which includes measurement of the roll φ,
pitch θ, and the angular velocity of the torso βω = (φ̇, θ̇, ψ̇),
and from motor encoders that measure the robot’s 12 joint
angles q. The complete observation at timestep t is

st = [aTt−1,ot, s
T
TG, gd,t, gh,t],

where ot = [dTt ,
β ωTt , q

T
t , φt, θt, ] are the sensor obser-

vations, gd and gh are the distance and relative heading
to the target, at−1 is the action at the last timestep, and
sTTG are the parameters of the trajectory generator (Section
III-C). Unlike some prior work in MTRL, where the task
ID is part of the observation [22], [23], we purposefully
choose not to leverage such information, because identifying
tasks automatically in the real world is challenging. Instead,
we would like to train a policy that can rely on its own
perception input and demonstrates zero-shot generalization to
new tasks, without knowing the task ID explicitly. In section
IV, we demonstrate our perception is crucial in learning
policies which generalize well to new tasks. The output
action at of the policy specifies the desired joint angles,
which are tracked by PD controllers by the simulated robot.

We employ a simple reward function, which encourages
the agent to navigate to a target location g = (xg, yg, zg)
(the red ball in Figure 1):

rt =
gd,t − gd,t−1

∆t
,

where gd,t is the Euclidean distance from the robot to the
target location at timestep t, and ∆t is the timestep duration.
This reward can be interpreted as the speed that the robot is
moving towards the target location. Once the robot’s center
of mass is within a threshold distance to the target location,
the task is complete.

B. Terrain Parameterization and Procedural Task Genera-
tion

We develop a procedural terrain generator to generate
diverse and challenging terrains that provide the robot with
a large quantity of rich training data. The environment is
composed of m×n pillars, each pillar having cross-sectional
dimensions of l, w, and height h. We denote H = {hi,j} ∈

1Although we use a simulated robot due to limited access to the physical
robot during COVID-19, we strive to make the simulation, including the
sensor measurement, as faithful as possible to the real robot.



TABLE I
TERRAIN PARAMETERIZATION AND GENERATION FOR SELECTED

EXAMPLES.

Terrain Terrain Parameterization
Parameters φ Terrain Generation

Flat No parameters H = 0

Rugged
Min terrain height: hmin
Max terrain height: hmax

Gaussian kernel std: σ

H ∼ Um,n(hmin, hmax)

Apply Gaussian smoothing
with σ on H

Holes Number of holes: n
Hole depth: h

H = 0
Sample n index pairs (i, j)

H(i, j) = h

Obstacles Number of obstacles: n
obstacle height: h

H = 0
Sample n index pairs (i, j)

H(i, j) = h

Stairs
Stair step height: h
Stair step length: l

H(0, :) = 0

Set column lengths to l
H(i+ 1, :) = H(i, :) + h

Rm×n as the height field for all the pillars. During training,
we select a task Mi and adjust each pillar’s heights to
reflect the chosen task. Each task is a set of randomly
generated terrains that belongs to the same type (e.g., flat,
stairs). Each type of terrain is described by a parameter
vector φi, which provides the lower and upper bounds
for the random sampling. The terrain generator constructs
the heightfield H from the given parameter vector φ. For
example, the parameter vector φ for the rugged terrain task
(Fig. 3b) includes the minimum and maximum values of the
heightfield; for the stairs task, the parameter vector defines
the height and length of each step. Table I summarizes the
parameters and terrain generator for selected terrain types.
With this simple parameterization, we can generate over ten
different types of terrains that a robot may encounter in
the real world. Our procedural terrain generation algorithm
provides a rich set of training data essential for generalizable
policies to emerge.

C. Visual-Locomotion Policy Architecture

Exteroceptive perception plays a crucial role when legged
robots need to navigate different terrains and environments
with obstacles and humans [24], [25]. As such, we aim
to incorporate perception into our policy architecture such
that information from the robot’s surroundings can modulate
locomotion. Additionally, the policy’s low-level actuation
commands need to be smooth and realizable on the physical
robot. To this end, we seek to restrict the search space of
possible gaits to be cyclic and smooth while still expressive
enough so that the perception can modulate locomotion
sufficiently to work on different terrains.

In our visual-locomotion policy architecture (Fig. 2), we
use two separate neural network encoders to process the
proprioceptive and exteroceptive inputs. The upper branch
of Fig. 2a processes the LiDAR input, while the lower
branch takes care of proprioceptive information. The learned
lower-dimensional features are concatenated with the target
information before being passed to the policy’s locomotion
component. We chose to use Policies Modulating Trajectory

Generators (PMTG) [3] as our locomotion component ar-
chitecture (Fig. 2b). PMTG encourages the policy to learn
smooth and cyclic locomotion behaviors. PMTG outputs a
desired trajectory for the legs that is modulated by a learned
policy πθ(·): The policy observes the state of the trajectory
generator (TG), stg, and the robot’s observation st, then
outputs parameters of the TG, ptg, including gait frequency,
swing height, and stride length, and a residual action term
µfb. The final output action of our visual-locomotion policy
is the combination of the trajectory generator and the residual
action: at = µtg+µfb. Please refer to the original paper [3]
for more details. As detailed in [16], our visual-locomotion
policy architecture achieves a separation of concerns between
the basic locomotion skills and terrain perception, which
enables the robot to adapt its smooth locomotion behaviors
according to its surrounding environments.

IV. EXPERIMENTAL RESULTS

We design experiments to validate the proposed system’s
ability to learn a visual locomotion policy that generalizes
well to terrains not encountered during training. In particular,
we would like to answer the following two questions:
• Can our system learn visual locomotion policies that

demonstrate zero-shot generalization to new terrains?
• Can our policy architecture effectively use LiDAR input

and PMTG parameterization to improve the generaliza-
tion performance over unseen terrains?

A. Experiment Details

To answer the above questions, we evaluate our system
using a simulated Unitree Laikago quadruped robot [26],

(a) Visual-locomotion policy architecture.

(b) The locomotion component using PMTG [3] for smooth
and cyclic actuation patterns.

Fig. 2. Overview of the visual-locomotion policy architecture.



(a) Obstacles (b) Rugged (c) Stairs (d) Cliff

(e) Forest (f) Holes (g) Gaps (h) Hills

Fig. 3. A Laikago robot deployed in various procedurally generated training environments. The red sphere represents goal g and success radius rg .

which weighs approximately 22kg and is actuated by 12
motors. We simulate the onboard Velodyne VLP-16 (Puck)
LiDAR sensor, which provides the perception of the sur-
rounding environment (See Figure 2b). The LiDAR measures
the distance from the surrounding obstacles and terrain to the
robot. This sensor supports 16 channels, a 360◦ horizontal
field of view, and a 30◦ vertical field of view. We add
Gaussian noise to the ground-truth distance readings in
simulation to mimic the real-world noise model. The 3D
LiDAR scan matrix D is normalized to range [0, 1] and
flattened to a vector d.

Our policy computes joint target positions (at), which are
converted to target joint torques by a PD controller running at
1kHz. Rigid body dynamics and contacts are also simulated
at 1kHz. In other words, the position and velocity (provided
by PyBullet [4]) and the desired torque (provided by the PD
controller) are sent to the actuator model every 1ms. The
actuator model then computes 10 internal 100µs steps and
provides the effective output torque of the actuator, which
is then used by PyBullet to compute joint accelerations. The
simulation environment is configured to use an action repeat
of 10 steps, which means that our policy computes a new
action at and receive a state st every 10ms (100Hz).

We train the visual-locomotion policy using the MTRL
formulation with simulated environments randomly gener-
ated using our procedural task generation method (Section
III-B). We choose a distributed version of the Proximal
Policy Optimization (PPO) [27] in TF-Agents [28] for train-
ing. We use a 2-layer fully-connected neural network of
dimensions (512, 256) to parameterize the value function and
another network of dimensions (256, 128) to parameterize
the policy. The policy outputs the parameters of a multi-
variate Gaussian distribution, which we sample actions from
during training. We use a greedy policy during evaluation by
executing the mean of the multivariate Gaussian distribution
provided by the policy network. The dimensions of the

exteroceptive and proprioceptive input encoders are both
(32, 16, 4), respectively. We use the ReLU activation function
for all layers in both networks [29]. The advantages are
estimated using Generalized Advantage Estimation [30].

We then evaluate the trained policies on a suite of test-
ing environments not encountered during training. Figure
1 illustrates a subset of these testing environments. These
high-fidelity simulated environments are created in PyBullet
physics engine [4] with Gibson scenes [5]. A policy’s ability
to successfully navigate across a given terrain is measured
using the task completion rate, tcr, which measures how
close the agent gets to the target relative to its starting
position:

tcr = 1− gd,T
gd,0

,

where gd,T is the final Euclidean distance between the robot
and the target when the robot falls or completes the task, and
gd,0 is the distance at the beginning of the episode. A task
completion rate of 1 indicates successful navigation to the
target, whereas tcr close to zero means that the robot cannot
navigate across the terrain.

B. The Impact of MTRL on Generalization

Table II shows the generalization performance of our
visual-locomotion policy trained on different types of ter-
rains (rows) and tested in unseen environments (columns),
including a maze (Maze), a steep and rugged mountain
(Mountain), two indoor scenarios (Office 1 and Office 2), an
office space with moving humans (Dynamic Env), a forest
scene with rugged terrain and obstacles (Forest), a winding
path with a cliff on both sides (Cliff), and a randomly-
generated continuous mesh (Continuous). Policies trained
on a single type of terrain achieve a low task completion
rate in the testing environments due to a lack of diverse
training data. In contrast, our approach achieves much higher
generalization performance. For instance, our method on
average achieves a task completion rate of 67% on the



TABLE II
GENERALIZATION PERFORMANCE OF OUR VISUAL-LOCOMOTION POLICY.

TABLE III
COMPARISON OF OUR PROPOSED METHOD TO OTHER POLICIES DEPLOYED IN A MTRL TRAINING REGIME. THE PERFORMANCE DECREASES WHEN

THE POLICY DOES NOT USE A PMTG PARAMETERIZATION, WHEN THE POLICY IS NOT PROVIDED EXTEROCEPTIVE INPUTS FROM THE LIDAR, AND

WHEN MULTI-TASK TRAINING IS PERFORMED IN A SEQUENTIAL MANNER.

mountain task, while policies trained in a single type of
terrain only achieve 28% at best (See Figure 4 for a snapshot
of our policy navigating up the rugged mountain trail). These
results indicate that our MTRL formulation using procedural
task generation, and visual-locomotion policy architecture,
results in superior generalization performance. The policy

Fig. 4. Snapshot of a laikago robot navigating through mountainous terrain
not encountered during training. Please refer to the supplementary video for
more examples of the agent navigating challenging terrains.

learned with our system can be successfully deployed in new
unseen environments.

C. Ablation Studies

We perform three ablation studies to understand the im-
portance of each design decision in our system. Table III
summarizes their impacts on the resulting generalization
performance of the policy.

a) PMTG: We replace the locomotion component of
the visual-locomotion policy with a reactive policy that does
not have a trajectory generator. Our PMTG-parameterized
visual-locomotion policy performs 28%-218% better than a
pure reactive locomotion component. We find that PMTG
produces smoother actions and leads to improved zero-shot
generalization to new terrains.

b) Exteroceptive input: We remove the LiDAR input
from the visual-locomotion policy. Observing Table III, it is
clear that the exteroceptive information plays a critical role
in learning generalizable locomotion policies that can adapt
to a wide variety of terrains. This finding agrees with results
from the field of experimental psychology, which establish
the importance of exteroceptive observations in guiding foot
placement when navigating over complex terrains [25], [24].
Figure 5 visualizes the trajectory produced by our visual



Fig. 5. Visualization of trajectory generated by our method in an
environment with many obstacles. Foot Z positions for the left hind, right
hind, left forward, and right forward feet are shown.

locomotion policy in a terrain with obstacles. When walking
over flat terrain, the robot’s foot height is constant and cyclic,
only varying when turning to avoid obstacles. In contrast, on
rugged terrain (Figure 6), the robot carefully places its feet to
adapt to the geometry of the terrain to maintain balance. This
careful foot placement is essential for challenging terrains
and requires a visual feedback loop, which our learning
system can provide.

c) MTRL training scheme: Our system generates a new
random locomotion task at each episode for all the distributed
workers. This ensures a steady stream of rich training data to
the agent. In this study, we lower the variety of tasks supplied
in a single training step by proving tasks sequentially. That is,
the agent learns one task for a fixed number of training steps
before switching the task. The policy trained in a sequential
fashion performs poorly due to catastrophic forgetting [31].

These ablation studies confirm the importance of each
component of our system, including the exteroceptive input
and PMTG used in the visual-locomotion policy architecture,
as well as our multi-task POMDP training formulation. By

Fig. 6. Visualization of trajectory generated by our method in a rugged
terrain. Foot Z positions for the left hind, right hind, left forward, and right
forward feet are shown. The rugged terrain requires that the robot carefully
place its feet to maintain balance.

combining these components, our system can learn locomo-
tion policies that work on various terrains and demonstrate
zero-shot generalization to new environments.

V. CONCLUSION
We introduce a learning system that enables legged robots

to traverse various environments and demonstrates zero-shot
generalization to new terrains. Our system consists of a novel
multi-task reinforcement learning formulation of the loco-
motion problem, a visual locomotion policy architecture that
encourages smooth actions and incorporates perception to
modulate locomotion, and a novel procedural terrain genera-
tion algorithm that provides the agent with rich training data
from a variety of simulated terrains. Our results on a suite of
simulated environments show that treating legged locomotion
as a multi-task POMDP leads to increased generalization
performance. Additionally, we show that providing the policy
with a strong prior over the space of gaits further enhances
its ability to generalize to unseen terrains. In future work,
we plan to evaluate our work on a real-world robot.
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